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1.0 Introduction 

In many instrumental musical genres, especially those featuring improvisation, a natural way in 

which listeners divide up a song into logical subsections is to segment the song according to 

which instrument is soloing during a given section.  Improvisational Jazz is a prime example of 

such a genre, where performances usually consist of a sequence of individual solos. A system 

which could analyze an audio recording, locate solo sections and identify the soloing instrument 

could allow users of digital audio playback devices to easily navigate their way to sections of 

interest in a song.  Such a system could also be used to do content based searches of online 

music, based on the presence or absence of solos by particular instruments.  In this paper we 

present a method that performs the fundamental classification task of such a system.  What 

follows is a description a method for analyzing a short clip of music, and identifying the 

dominant, i.e. soloing instrument using a combination of wavelet transform analysis for 

preprocessing and a neural network for classification. 

 

2.0 Wavelets and Audio Signal Content Analysis 

2.1 STFT Analysis and Its Drawbacks 

The majority of techniques currently used for audio content description are based on the short 

time fourier transform (STFT) for time-frequency analysis [1].  The STFT is a very powerful tool 

for analyzing the frequency spectrum of a time varying signal, and is capable of producing very 

detailed information about the frequency content of a signal.  Despite its considerable usefulness 

for time-frequency analysis, there are a number of drawbacks in using the STFT for analyzing 

audio signals [2]. Firstly, the analysis produces equally spaced frequency bands, which does not 

correspond to humans’ logarithmically spaced perception of frequencies. To get acceptable 

frequency resolution in low frequencies, with respect to human perception, long analysis 

windows must be used, which results in loss of temporal resolution and excessive resolution in 

high frequencies. Therefore, the STFT is quite inefficient for this purpose.  Secondly, when 

window filtering is applied to the data to reduce errors, the STFT is even more inefficient, as 

techniques such as overlap-and-add need to be used.  Lastly, the compromise of time and 



frequency resolution, that must be accepted due to the uncertainty principle, is the same over all 

frequencies, and cannot be adjusted for different frequency ranges. 

2.2 Wavelet Transform Analysis 

The wavelet transform deals with the time-frequency resolution limitations of fixed-size 

windowing that burden the STFT by using variable sized windows for different frequency 

bands[3]. The wavelet transform uses analysis windows (wavelets) that dilate according to the 

frequency being analyzed, with long time windows where more precise low frequency 

information is desired, and shorter windows where the high frequency information is desired.  

Mathematically, the Fourier Transform represents the process of the Fourier analysis [4]: 

      

Therefore, the mathematical bases of the Fourier Transform are sine waves (the complex 

exponential can be broken down into real and imaginary sinusoidal components) of infinite 

duration. Similarly, the Continuous Wavelet Transform (CWT) is defined as: 

 

 where * is the complex conjugate and  is the mother wavelet basis function, scaled by a 

factor a and dilated by a factor b.  Just as the Fourier Transform breaks up a signal into sine 

waves of different frequencies, the wavelet transform breaks up a signal into scaled and shifted 

versions of the wavelet basis function. 

If we define 

   

the CWT can be viewed as the inner product of the original signal f(t), with the basis : 

           

or, equivalently, the wavelet transform is the convolution of the function f with the filter whose 

impulse response is  
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where 

     . 

The filter frequency response of the dilated mother wavelet is: 

      

Taking the Fourier Transform on both sides of  above, the wavelet transform can be 

viewed as the filtering of the signal with a bandpass filter whose frequency response is . 

The CWT as given above is over-complete.  The coefficients  are redundant. The 

discrete version of the wavelet transform, the DWT, changes scale by powers of two, producing 

an octave band decomposition of a signal. Figure 1 shows side-by-side plots of the STFT and 

CWT with power of two spaced (dyadic) frequency scales of an audio signal.  The figure 

illustrates how the wavelet transform’s time and frequency resolution scale with frequency in 

contrast to the uniform time-frequency resolution of the STFT.  

 

   

Figure 1.  STFT of an audio signal(left plot) and corresponding CWT with dyadic frequency scaling. 

 

For the analysis carried out on audio signals in this paper, the CWT will be used, with scales that 

change in powers of two, similar to the DWT. 
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3.0 Wavelet Dispersion Measure for Classification 

3.1 Background 

In more practical terms, what the previous discussion tells us is that wavelet transform analysis 

overcomes the specific shortcomings of the STFT for time-frequency analysis of audio signal 

listed earlier.  The information contained in the wavelet transform of an audio signal is 

concentrated in a way that closely matches the characteristics of human auditory perception. 

Motivated by this fact, we would like to obtain a compact representation of the information in 

the wavelet transform coefficients that is useful for instrument classification using neural 

networks. Such a wavelet based measure for audio content description was proposed by Stephan 

Rein and Martin Reisslein for identification of similar musical works[5],[6]. The measure they 

proposed, dubbed the wavelet rank dispersion vector, captures the patterns formed by the 

relationships between the magnitudes of the wavelet coefficients across the frequency scale 

dimension and across the time dimension. Such constitute just the types of signal features 

necessary for our classification goal. 

3.2 Wavelet Rank Dispersion Vector (WRDV) 

To construct the WRDV, we start with the coefficients of the CWT of a signal.  The coefficients 

form an N column by M row matrix, where N is the length of the signal and M is the number of 

wavelet scales (figure 2).  Next we assign ranks, from highest magnitude to lowest over each 

column, i.e. we rank the scale magnitudes at each sample time (figure 3).   Once ranks are 

assigned, we discard the coefficients (figure 4) and accumulate the rank histogram data for each 

scale (row) to generate a M by M square matrix, where the number in the first column represents 

the number of times that each scale was assigned a rank of one, and likewise, column two reports 

the number of times each scale was ranked 2, and so on for all remaining columns.  This is the 

wavelet coefficient dispersion matrix (figure 5).   

 



Figure 2. CWT coefficients for a length 5 signal, over 3 wavelet scales 

 

 

Figure 3. CWT coefficients with magnitude rankings (in parentheses) over scales (columns) 

 

Figure 4. CWT coefficients’ magnitude rankings only (coefficients discarded) 

 

 

 

Figure 5. Wavelet coefficient dispersion matrix 

 

Each row of the wavelet coefficient dispersion matrix contains the rank histogram data for each 

frequency scale for the analyzed signal (figure 6).  The set of histogram data of all the rows 

collectively represents the characteristic temporal and frequency scale patterns mentioned earlier 

for the analyzed audio signal.  As a final step, we concatenate each of the rows into a single 

vector, which is the wavelet rank dispersion vector (WRDV).  The WRDV will be used as the 

input for the neural network that will perform the desired classification task. We note that the 

CWT is used rather than the DWT (which is more common for processing digital signals) 

because, for a length " signal, the CWT produces " coefficients for each scale, which is 

required to construct the "x" wavelet coefficient dispersion matrix. 



Figure 6. Rank histograms of each scale, contained in the rows of the wavelet coefficient dispersion matrix  

 

 

3.3 Analysis of WRDV for Instrument Classification Performance 

Thus far, we only have an intuitive rational for using the WRDV as a signal content descriptor for 

classification.  Here we present a more quantitative justification, along with more detailed 

arguments behind the intuition for using the WRDV.  

As we noted earlier, the WRDV captures information about the relative magnitudes of the 

wavelet transform coefficients across scales. The WRDV also aggregates the wavelet coefficient 

relationships across the time dimension, so the intrinsic temporal characteristics of the signal are 

also represented[5].  Such temporal characteristics can help differentiate different musical 

instruments, for example, a piano note has a percussive, wide spectrum attack and exponentially 

decaying loudness, whereas notes played on a saxophone have more stationary spectral and 

loudness characteristics.  

As a general quantitative indicator of the similarity of WRDV’s of audio signals with the same 

dominant instrument, and dissimilarity of WRDV's with different dominant instruments, we can 

use correlation measures. The correlation plot in Figure 7 shows which vector pairs in our data 

set have maximum correlation coefficients with each other (excluding self correlation). If the 

WRDV’s for the same instruments correlate strongly with each other and weakly with different 

instruments, it is a good indicator that WRDV’s have the potential to function as a good 



descriptor for classifying the dominant instrument.  In the correlation plot, we see that WRDV’s  

of like instruments do, in fact, correlate well (73% have maximum correlation coefficient with 

like instruments). 

 

4.0 Input Data 

As our data set, we used audio excerpts from small ensemble ‘modern jazz’ recordings (e.g. 

late1950’s Miles Davis) since they typically have consistent characteristics (instrumentation, 

playing style) and follow a pattern of alternating individual solos in their performances, and thus 

provide a rich unified source of examples for our classification experiments. 

Figure 7. Maximum correlation coefficients of WRDV’s. 73% matching. 

 

 

We collected solo's from eight different recordings by eight different groups for five different 

instruments: bass, piano, drums, tenor sax, and trumpet.   



The audio excerpts were then divided up into two second blocks (22050Hz sampling rate) for 

analysis. The two second block length was empirically, somewhat arbitrarily, chosen to the 

smallest sized block that was big enough to insure with high confidence that the soloist is playing 

in the excerpt. We produced a large data set consisting of 44 audio blocks for each instrument, 

and a smaller data set consisting of 4 audio blocks per instrument. 

We used an equal number of training pairs for each instrument.  We note that in doing so we 

imposed equal prior probabilities for each of the instruments, which does not reflect 

the actual likelihood of different instruments’ solos. For the purposes of our experiments, we 

chose to ignore these prior probabilities since the basic performance of the classification network 

will not be fundamentally dependent on them. 

For the wavelet analysis, we used the CWT (from the Matlab Wavelet Toolbox) with 24 wavelet 

scales, which resulted in 24x24 wavelet coefficient dispersion matricies.  We discarded the top 

two highest and lowest columns of the dispersion matricies, which represented the highest and 

lowest magnitude outliers, which reduced the dimensionality of the WRDV’s to 480 (24x20). We 

used the Meyer, the Morlet and the bior3.9 wavelet basis functions to do three separate analyses 

on the small data set for performance comparison of the different wavelet bases, then, based on 

the results, the chose the Meyer wavelet basis function to analyze the large data set for our final 

results. 

 

5.0 Instrument Classification Neural Network 

5.1 Neural Network Requirements 

In order to choose an effective neural network, the nature of the task must first be considered.  

From a 480-dimensional wavelet dispersion input vector, a musical instrument must be clearly 

classified.  At first glance, a single linear output seems to be ideal, and it certainly is the easiest 

output to implement in a neural network.  However, early attempts to employ this single output 

resulted in unclear classification, with some outputs far removed from established classification 

criteria and others equidistant from two classification points.  In order to increase the clarity of 

the network output, a 5-dimensional output was implemented with a binary classification 

method.  Ideally, only one dimension will see a large response, and thus the output vector will be 



dominated by the dimension corresponding to the correct instrument.  In practice, the networks 

showed improved input/output correlation and clear classification when this strategy was 

implemented. 

 By choosing the component of the output vector with the highest magnitude, these 

networks can accurately classify the dominant musical instrument in the sample.  Because the 

networks we trained so rarely misclassified instruments (2 validation samples out of 300 for the 

20-training-vector networks, 0 out of 3300 for the 220-training-vector networks), for the 

purposes of this discussion, the error used to determine the relative effectiveness of each network 

is the mean squared error of each output deviation from the ideal of 0 magnitude in 4 dimensions 

and a response of 1 in the correct dimension (See figure 8). 

 

Figure 8. Sample output from a multi-layer perceptron network, typical mean square error 

5.2 Network Selection 

When evaluating an appropriate network choice for the classification of instruments from a 

wavelet dispersion vector input, we chose to examine two of the most common networks.  We 

implemented similar evaluation techniques to measure the accuracy and complexity of both a 

multi-layer perceptron (MLP) network and a radial basis function (RBF) network. 

Both networks share a common set of features.  The input to each is a 480 dimensional wavelet 

dispersion vector, and the output of each is a 5 dimensional classification vector. 
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Each network has several parameters that determine the efficiency and the complexity of the 

network.  Although the number of inputs and outputs are defined, the number of hidden units in 

the multi-layer perceptron network is variable, as well as the number of Gaussian centers in the 

radial basis function network.  The spread on each Gaussian center in the radial basis function 

network is a variable parameter in our experiments.  Similarly, the number of epochs in the 

multi-layer perceptron needs to be determined to most effectively train the network without 

overtraining. 

 

5.3 Network Performance Measure 

Because the input space is 480 dimensions, the number of known training samples necessary to 

reasonably populate the input space is quite large.  Because the number of training input vectors 

is limited, we chose to implement the leave-one-out training method in order to maximize the 

number of known training points.  In order to maintain the integrity of our validation error 

calculation, we used all but one known input vector for training and then tested the remaining 

input.  To get a dependable error value for each network, we tested the validation error leaving 

out each sample one at a time and then averaged those error values.  From the validation and 

training error data, we were able to compare different network types in order to choose the best 

set of network parameters. 

 

5.4 Experimental Improvements 

In order to decrease the validation error, we used two approaches.  First, we evaluated three 

different input wavelet dispersion vectors generated by three different algorithms and compared 

their results through identical multi-layer perceptron networks.  We also evaluated the beneficial 

effects of normalizing the input vector.  The second component of our analysis was to vary two 

parameters for each network type and observe the relative performance of each in search of an 

ideal classification network. 

 



5.5 Input data manipulation and normalization 

Three different algorithms for generating wavelet dispersion vectors were tested in identical 

multi-layer perceptron networks to determine which algorithm was superior.  We trained the 

networks using the leave-one-out method and 20 input vectors (4 for each instrument) generated 

by each algorithm.  The multi-layer perceptron networks were utilized because the limited 

number of input vectors did not sufficiently populate the 480-dimension input space to 

implement a radial basis function network. 

For each series of input vectors, we tested several different combinations of multi-layer 

perceptron network parameters.  The networks had combinations of 1, 5, 15, 25, and 35 hidden 

units and 5-2000 epochs (See figure 1).  In addition, we tested the error of each original 

dispersion vector before and after normalization to observe the effects of this preprocessing (See 

figure 10). 

 

Figure 9.1 Meyer wavelet basis, mean squared error (blue = training, green = validation) 

 



 

Figure 9.2 Bior3.9 wavelet basis, mean squared error (blue = training, green = validation) 

 

Figure 9.3 Morlet wavelet basis, mean squared error (blue = training, green = validation) 



 

Figure 10.1 Normalized Meyer wavelet basis, mean squared error (blue = training, green = validation) 

 

Figure 10.2 Normalized Bior3.9 wavelet basis, mean squared error (blue = training, green = validation) 



 

6.0 Results 
 The multi-layer perceptron networks showed a considerably smaller error when the input 

vectors were normalized.  This is consistent with our expectations because normalizing the input 

vector contains the training samples inside a relatively small portion of the input space.  Based 

on this result, we normalized the input vectors for the final multi-layer perceptron networks as 

well as all of the radial basis function networks. 

 Of the different wavelet dispersion vector generating algorithms, the combination with 

the least error was the Meyer transform vector input to a multi-layer perceptron network with 5-

15 hidden units and less than 200 training iterations. 

 

6.1 Network parameters 

 In order to find network parameters to generate the lowest error, we used 220 training 

vectors generated by the Meyer transform (44 for each instrument), and trained multi-layer 

perceptron and radial basis function networks with various parameters.  Based on the 20-

training-vector data, we tested multi-layer perceptron networks with 4-12 hidden units and 200 

epochs (See figure 11.1).  We tested radial basis function networks with 2-70 centers and values 

of sigma (Gaussian spread on each center) between 0.05 and 10.0 (See figure 11.2). 

 



 

Figure 10.3 Morlet basis (normalized output), mean squared error (blue = training, green = validation) 

 

6.3 Network performance comparison 

The multi-layer perceptron network that performed the best had 5 hidden units and 1000 training 

epochs (See figures 11.3 and 12.2).  The resulting validation error was less than 19%.  The most 

effective radial basis function network had a 35 centers and a Gaussian spread on each center of 

0.1 (See figures 11.2 and 12.1).  The validation error of this network was less than 40%.  

Therefore, of the networks we trained, the network with the least error was the multi-layer 

perceptron network (See figure 12.2). 



 

Figure 11.1 Meyer basis (normalized output) mean squared error (blue = training, green = validation) 

Figure 

11.2 Radial basis function networks with Meyer basis, normalized inputs, 

mean squared error in blue = training, green = validation) 

 

 



 
Figure 11.3 Multi-layer perceptron networks with Meyer basis, normalized inputs, 

mean squared error in blue = training, green = validation) 

 

 

 

Figure 12.1 Final radial basis function network with Meyer basis, normalized inputs, mean squared error (blue = 

training, green = validation) 



 

Figure 12.2 Final multi-layer perceptron network (10 hidden units and 100 iterations) with Meyer basis, normalized 

inputs, mean squared error 

 

7.0 Conclusion 
Our findings show that the scheme proposed for identifying the dominant musical instrument in a 

musical excerpt using the wavelet rank dispersion vector (WRDV) measure and a neural network 

for classification performed exceptionally well for a data set of small ensemble jazz recordings.  

The best performance was obtained by using the Meyer basis function for the wavelet analysis, 

and a multilayer perceptron network for classification.  The final network exhibited a nearly 

perfect success rate in identifying the dominant instruments (after thresholding) for our data set 

examples.  The classification method described in this paper has good potential for broad 

application to audio classification tasks beyond the one demonstrated in our experiments.  The 

identification of similar classical musical pieces using a similar processing and neural network 

scheme has already been demonstrated by Rein and Reisslein [5].  Due to the ability to capture 

both frequency and temporal pattern characteristics of audio signals, the WRDV measure might 

be used, for example, to identify specific performers by their playing style, or composers by their 

compositional style. 
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