Auditory sensitivity provided by self-tuned critical oscillations of hair cells

Nathan Shepard
BENG 250B

May 15, 2007
Outline

- Inner hair cell physiology
- Criteria for hearing
- Hopf bifurcation model
- Strengths and weaknesses
- Take-home message
Inner Hair Cell Physiology
Inner Hair Cell Physiology

- Myosin tunes the response by moving along the actin filament at ATP hydrolysis rate (α)
- Ion channels completely close if the bundle is deflected for 1/10 sec
Inner Hair Cell Physiology

- Kinocilium is responsible for Hopf Bifurcation
- Isolated, vibrates at \(\Lambda = 4L \)
- \(\omega_c = (Ka/\lambda)^{1/2} \)
- \(\omega_c = (k_s a/\eta L^3)^{1/2} \)
- Kinocilium length defines \(\omega_c \)
Outline

- Inner hair cell physiology
- **Criteria for hearing**
- Hopf bifurcation model
- Strengths and weaknesses
- Take-home message
Criteria for Hearing

- High range of frequencies (20Hz-20kHz) with high resolution
- > 1kHz signal – must be mechanical transducer
- Each cell must be responsive to particular frequency
 - Must synapse at that frequency
- Sensitivity (Audible Sound \(\leq \) Thermal)
- Non-linear amplification
Criteria for Hearing

- Non-linear response for small stimulus ($f_1 \ssim f_{th}$)
- Low-gain filter for large stimulus

Fig. 1. Response to external forces near a Hopf bifurcation (a) Amplitude x_1 as a function of force f_1 at various driving frequencies ν (\(\bigcirc \) 2 kHz, \(\times \) 5 kHz, \(\square \) 10 kHz, + 13 kHz). (b) Gain r as a function of frequency ν for different amplitudes f_1 (\(\bigcirc \)
Criteria for Hearing

- Mechanical Gain shows a peak for a given kinocilium length
- Laser interferometry of basilar membrane shows similar results

\[r \text{ (nm/pN)} \]

(b) Gain \(r \) as a function of frequency \(v \) for different amplitudes \(f_1 \) (\(\diamond 0.01 \text{ pN}, \triangle 0.05 \text{ pN}, + 0.1 \text{ pN}, \times 0.5 \text{ pN}, \square 1 \text{ pN} \)). Although the form of these curves...
Outline

- Inner hair cell physiology
- Criteria for hearing
- Hopf bifurcation model
- Strengths and weaknesses
- Take-home message
Andronov-Hopf Bifurcation

- Maintain two poles on imaginary axis
- S-space
- $C < C_c$: unstable
- $C > C_c$: stable
- $C = C_c$: bifurcation
Andronov-Hopf Bifurcation

- **Stimulus (force)** \(f(t) = f_1 e^{i\omega t} + f_{-1} e^{-i\omega t} \)
 - \(f_1 = A x_1 + B |x_1|^2 x_1 + \ldots \)
 - \(A(C_{cr}, \omega) = 0 \)

- **Response (deflection)** \(x(t) = \sum x_n e^{i n \omega t} \)
 - \(C = C_c \ |x(t)| \leq |B(C, \omega)|^{-1/3} |f_1|^{1/3} \)
 - \(r \) varies with \(|f_1|^{-2/3} \)
Andronov-Hopf Bifurcation

- C changes with x
 - $x < \delta$, $C \downarrow$
 - $x > \delta$, $C \uparrow$

- $(1/C)\left(\frac{\partial C}{\partial t}\right) = \frac{1}{\tau}(x^2/\delta^2 - 1)$

- Noise added
 - Brownian motion
 - Stochastic
 - Monte Carlo simulation
Andronov-Hopf Bifurcation

- Simulations with different numbers of molecular motors keeping constant steady-state tension in tip links
- C_c varies with $1/n^2$
- α (ATP hydrolysis rate)
Andronov-Hopf Bifurcation

- Response to \(\sin() \) input near \(C_c \)
- \(n = 2000 \)
- Low \(f_1 \)
 - Phase alignment
- Intermediate \(f_1 \)
 - \(x \sim |f_1|^{1/3} \)
Andronov-Hopf Bifurcation

- **Ion flux**
 - Depolarizes membrane
 - Generates synaptic current (< 1kHz)

- **Weak stimulus**
 - Firing rate constant
 - Phase lock increases
Andronov-Hopf Bifurcation

- Benefits of Noise
 - Self-tuned critical oscillations are incoherent
 - Weak stimuli don’t increase amplitude

- Model accounts for “adaptation”
 - Firing rate decreases with strong stimuli
 - Not with weak stimuli

- Critical oscillations explain otoacoustic emissions
Outline

- Inner hair cell physiology
- Criteria for hearing
- Hopf bifurcation model
- Strengths and weaknesses
- Take-home message
Strengths & Weaknesses

Strengths
- Numerical analysis
- Thorough modeling

Weaknesses
- Mammals have no kinocilia
- Few corollaries to specific studies in non-mammals
- Cilia and synapse characteristics when freq > 1kHz
Outline

- Inner hair cell physiology
- Criteria for hearing
- Hopf bifurcation model
- Strengths and weaknesses
- Take-home message
Take-home Message

- Dynein motors control ion channels to tune the hair cell to critical frequency
- Critical oscillations allow for non-linear gain
- A force equal to that of one myosin motor is enough to generate a response using phase-locking
Questions?

Jonathan Ashmore, UCL Ear Institute